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Abstract

In this document the cohesive model, a phenomenological model for crack propagation anal-
yses, is presented. An implementation of the model exists at GKSS for several years and is
developed steadily, therefore the foundations are explained first, and details specific to the ac-
tual implementation as a user defined element within the FE system ABAQUS are described
afterwards.

The actual paper describes the implemented version of the user subroutine, which con-
tains traction-separation-laws of Needleman, [Needleman, 1990], which is used for example in
[Siegmund and Brocks, 1998]), [Tvergaard, 1990] and Scheider, [Scheider, 2001a], used also in
[Scheider, 2001b]. A guide for the practical use of the cohesive model and the determination
of the material parameters is outside the scope of this document and will be published in a
separate paper.



Nomenclature

Γ cohesive energy
Γ0 critical cohesive energy at failure of the cohesive element
Φ potential of separation stress
Πi inner energy
α connection parameter between normal– and tangential stress and –

separation, respectively
δ separation (displacement jump between upper and lower side of the co-

hesive element)
δN , δT normal and tangential portion of the separation, resp.
δ0 critical separation at failure

D dimensionless damage parameter
K stiffness matrix
J crack driving force parameter
Ji J–integral at crack initiation
J Jakobi matrix
T cohesive stress
T0 max. cohesive stress
TN , T T normal and tangential portion of the cohesive stress
Vu matrix of shape functions
f vector of nodal forces
gi basis of local coordinate system
t cohesive stress vector at nodes
u displacement vector
[u] displacement jump vetor in the cohesive element (≡ separations)
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Chapter 1

Introduction

The idea for the cohesive model is based on the consideration that infinite stresses at the crack
tip are not realistic. Models to overcome this drawback have been introduced by [Dugdale, 1960]
and by [Barenblatt, 1962]. Both authors divided the crack in two parts: One part of the crack
surfaces, region I in fig. 1.1, is stress free, the other part, region II, is loaded by cohesive stresses.
Dugdale introduced the finite stress to be the yield stress, which holds only for plane stress, but
the crack opening stresses can be much higher than the equivalent stress in a multiaxial stress
state. Barenblatt, who investigated the fracture of brittle materials, made several assumptions
about the cohesive stresses: The extension of the cohesive zone d is constant for a given material
(independent from global load) and small compared to other dimensions. The stresses in the
cohesive zone follow a prescribed distribution σ(x), where x is the ligament coordinate, which
is specific for a given material but independent of the global loading conditions.

σ0

x

σ(x)crack length a

Fig. 1.1: Dugdale (left) and Barenblatt (right) crack models

Contrary to computational crack propagation analyses using the Gurson model, [Gurson, 1977],
and modifications due to [Tvergaard, 1990], respectively, no continuum elements are damaged
in the cohesive model. Cohesive interface elements are defined between the continuum elements
instead, which open when damage occurs and loose their stiffness at failure so that the continuum
elements are disconnected. For this reason the crack can propagate only along the element
boundaries. If the crack propagation direction is not known in advance, the mesh generation
has to make different crack paths possible.

In chapter 2 the mechanical behavior of a cohesive zone is explained. The implementation of
the cohesive zone as user defined elements in the FE system ABAQUS is described in chapter 3.
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Chapter 2

Mechanics of cohesive models

2.1 Advanced cohesive models

Most of the recently developed and proposed models are different from Barenblatt’s model in
that they define the traction acting on the ligament in dependency to the opening and not to
the crack tip distance as Barenblatt did.

For practical applications the model became more interesting when numerical methods, mostly
the finite element method, were applicable to nonlinear problems. [Needleman, 1987] was the
first, who used the model for crack propagation analyses of ductile materials. More than ten
years earlier [Hillerborg et al., 1976] applied the cohesive model to brittle fracture using the
finite element method for the first time, followed already in the 80’s by [Petersson, 1981] and
[Carpinteri, 1986] amongst others.

The material separation und thus damage of the structure is classically described by interface
elements — no continuum elements are damaged in the cohesive model. Using this technique,
the behavior of the material is split in two parts, the damage-free continuum with an arbitrary
material law, and the cohesive interfaces between the continuum elements, which specify only
the damage of the material.

The interface elements open when damage occurs and loose their stiffness at failure so that
the continuum elements are disconnected. For this reason the crack can propagate only along
the element boundaries. If the crack propagation direction is not known in advance, the mesh
generation has to make different crack paths possible.

The separation of the cohesive interfaces is calculated from the displacement jump [u], i.e. the
difference of the displacements of the adjacent continuum elements,

δ = [u] = u+ − u−. (2.1)

More common than the definition of the separation vector in global coordinates is the descrip-
tion in a local coordinate system, namely the distinction between normal separation, δN , and
tangential separation, δT as shown in fig. 2.1. The separation depends on the normal and the
shear stress, respectively, acting on the surface of the interface. When the normal or tangen-
tial component of the separation reaches a critical value, δN

0 or δT
0 , respectively, the continuum

5
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σ
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σ(x)
crack length a

Fig. 2.1: Separation of 2D continuum elements connected by a cohesive interface.

elements initially connected by this cohesive element, are disconnected, which means that the
material at this point has failed.

For three-dimensional problems, two tangential separation directions exist, which will be denoted
as δT1 and δT2. If isotropic materials are considered, a distinction between these two direction
is not necessary. For the sake of simplicity one may define a resultant tangential separation by

δT =
√

δT12 + δT22 ≤ δT
0 , (2.2)

which is physically meaningful if both components are monotonously increasing, at least. Gen-
erally, it can happen however, that the cohesive surfaces slide without changing the absolute
tangential separation defined by eq. (2.2), which is a physically questionable assumption. For
further considerations on unloading of cohesive elements see kaprefunload.

Beside the critical separation, δ0, the maximum traction (stress at the surface of the continuum
element), T0, is used as a fracture parameter, also denoted as ’cohesive strength’. The value of T0

only describes the maximum value of a traction-separation curve T (δ), in the following denoted
as cohesive law. Like the separations, the stresses T can also act in normal or in tangential
direction, leading to normal or shear fracture, respectively. The shape of the curve, T (δ), which
is assumed to be a material independent cohesive law, is defined differently by various authors.
Common to all cohesive laws is that

1. They contain the two material parameters T0 and δ0 mentioned above and

2. for total failure the stresses become zero, T (δ > δ0) ≡ 0 for both normal and tangential
separation (this condition is not fulfilled exactly for all cohesive laws as will be shown
later).

Several cohesive laws (also called traction-separation laws, or decohesion laws) will be given in
chapter 2.2.

The integration of the traction over separation, either in normal or in tangential direction, gives
the energy dissipated by the cohesive elements, Γ0. This third parameter can be determined
from the former two by

Γ0 =
δ0∫
0

T (δ) dδ (2.3)
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and used alternatively to δ0.

One can show that the energy at failure Γ0 equals the Rice integral [Rice, 1968] of crack
driving force J at initiation under the assumptions made for the validity of the HRR field
[de Andres et al., 1999]. Therefore the parameter can be easily determined by experiments.

If both separation modes, the tangential and the normal separation, occur simultaneously, there
is an influence of the normal separation on the tangential tractions and vice versa. The descrip-
tion for this case of ’mixed mode’ and the basic assumptions made in the literature, is given
in chapter 2.3. Other special issues are the unloading behavior of the cohesive zone and the
sliding of a failed cohesive element under negative normal separation, what involves contact of
the fracture surfaces, described in chapter 2.4.

The verification of the cohesive model and its parameters is not performed in this document, since
the model is validated by several examples, see e.g. [Siegmund et al., 1999] and [Lin et al., 1996].
Nevertheless, one simple 2-element example is conducted in chapter 6 showing the treatment of
shearfracture with alternating loading direction.

2.2 Traction separation law, TSL

The form of the function T (δ) given in eq. (2.3) is defined in the TSL. Since the cohesive
model is a phenomenological model there is no evidence which form to take for T (δ). So it
has to be assumed independent from the material as a model quality. In the literature one
can find several approaches, some of them are shown in fig. 2.2. The implemented TSL’s are
the cubic form of [Needleman, 1987] with its extensions regarding shear fracture and unloading
due to [Tvergaard, 1990] and the exponential curve from [Needleman, 1990]. In addition a
TSL similar to the law with constant stress ([Schwalbe and Cornec, 1994]), first mentioned in
[Scheider, 2001a], is developed and implemented. The mathematical foundations for the models
are given in chapter 3.1.

Beside the form of the curve, which was assumed to be a model quantity, there are two material
parameters, i.e. the maximum separation stress T0, which has to be overcome for final fracture,
and the separation at failure δ0. These quantities define the ’height’ and the ’width’ of the curve,
and give (together with the function of the curve) the dissipated energy per cohesive element as
a result. The damage, in the following denoted as D, is defined as the ratio of the actual to the
maximum separation

D =
δ

δ0
. (2.4)

2.3 Consideration of normal and shear fracture

Under consideration of simultanuously acting normal and shear fracture one has to define a new
quantity for damage and failure. As mentioned before, failure occurs in a pure normal fracture
when the separation exceeds the maximum separation δN

0 . At combined normal and shear
fracture (local in the cohesive element) the quantity which defines failure contains a normal and
a shear component, i.e. the shear damage will reduce the ductility in normal direction and vice
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Fig. 2.2: Form of the TSL: a) cubic, from [Needleman, 1987], b) constant, from
[Schwalbe and Cornec, 1994], c)exponential, from [Needleman, 1990], d) trilinear,
from [Tvergaard and Hutchinson, 1992]

versa. This influence of competing normal and tangential separation is to define an interaction
formula of the shear and normal separation:

D = m

√√√√(δN

δN
0

)m

+

(
δT

δT
0

)m

(2.5)

Equation (2.5) contains a model parameter m, which is a connection parameter. One can
determine two limiting cases from eq. (2.5), namely m = 1, that means a linear connection
between normal and tangential damage, and m → ∞, which leads to a vanishing influence of
one fracture mode to another. The damage and final fracture of a cohesive element are plotted
for m = 1 and m = 2 in fig. 2.3. It should be mentioned that most references use m = 2 as the
damage indicator, for which the damage is equal to the absolute value of separation.

As can be seen in the figure, the maximum normal separation decreases with increasing shear
separation. Another way to embed the influence of tangential on normal opening (and vice
versa) is to define the normal traction dependent on δT explicitly. In both cases the separation
function does not only depend on δN , but also on δT and/or on the damage D. Generally one
can write for the TSL

TN = TN (δN , D, δT ) T T = T T (δT , D, δN ) (2.6)
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Fig. 2.3: Interaction between normal– and shear separation

We will see at the different implementations, chapter 3, that any implementation uses another
dependence of the tractions on the separations.

2.4 Unloading

Local unloading effects can occur in the cases of global unloading of a structure, crack branching
or multiple cracks. One has therefore to define the behavior of the cohesive elements under
decreasing separation accounting for the irreversibility of the damage process. Since damage
evolution is a nonlinear process as inelastic deformation, the cohesive models are established in
analogy to the principles of plasticity, but allowing for strain softening. The terms ’loading’ and
’unloading’ will be used in the sense of increasing or decreasing separation, respectively, as the
tractions decrease also under increasing separation beyond maximum stress, T0. More generally,
’unloading’ is any change of the deformation direction by which the stress state removes from
the limiting traction-separation curve. The latter definition also applies for shear separation.

Two principle mechanisms depending on the material behavior have to be distinguished:

Ductile unloading The mechanical work for producing damage is totally dissipated, the void
growth and hence the inelastic separation are irreversible and any reduction of separation
occurs purely elastically with unchanged elastic stiffness, as shown in the upper row of
fig. 2.4.

Cleavage unloading The elastic stiffness of the material is reduced by damage, but the sepa-
ration vanishes when the stresses decrease to zero, as shown in the lower row of fig. 2.4.

Since the cohesive model is a phenomenological model, which can be used independently of the
fracture mechanism, the two assumptions apply to different material behaviour. The first one is
valid only for ductile crack propagation. Brittle fracture, which is characterized by micro cracks,
would not be modelled correctly with a permanent separation on unloading, since the micro
cracks close entirely (without getting back their stiffness). In this case the second unloading
mechanism should be used.

A second important problem concerns loading and unloading under ’mixed mode’ conditions,
i.e. combined normal and tangential separation. Again, two different models can be considered:
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Fig. 2.4: Behavior of the TSL at unloading; a) normal separation, b) shear separation

• Unloading is handled separately for normal and tangential separation, i.e. a cohesive el-
ement can be in an unloading state for normal, but in a loading state for tangential
separation and vice versa.

• Unloading depends on the total separation δ =
√

δN 2 + δT 2. In this case unloading could
be assumed even if the separation in one of the two modes might increase.

For pure normal or tangential separation both assumptions will lead to the same results. The
behaviour of ’ductile’ and ’cleavage’ unloading are described further in the following subsections.

2.4.1 Normal separation

Under normal separation the difference between the two unloading mechanism are shown on the
left side of fig. 2.4. Up to the first unloading, which starts in Point A, there is no difference
in the two mechanisms. In the unloading regime the traction separation correlation behaves
different as mentioned above and shown in the figure. In a new loading cycle (further increasing
separation) first the separation stress increases on the same curve up to point A in the left figures
of fig. 2.4 (both for ”ductile” and ”brittle” unloading mechanisms), and follows the original TSL
afterwards.

Under local normal loading of a cohesive element the damage does not increase under compres-
sion but only under tension. If an initial tensile loading is reverted, the separation of the cohesive
element behaves as shown in fig. 2.4. If the separation becomes negative, this means that the
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two parts of the material are penetrating each other. In this case the stiffness of the cohesive
element should be very high. for ductile fracture this condition is fulfilled automatically, but for
cleavage fracture the stiffness must be increased if the normal separation δ0 becomes negative.

The penetration of the cohesive surfaces must be checked even after total failure of the element,
since a contact condition is further on acting between the surfaces, even though the element has
no stiffness under conditions of positive separation.

2.4.2 Tangential separation

Under shear loading the damage can increase in both directions. It is assumed that a separation
(and as a consequence: damage) which leads to dissipated energy in one direction is also active
in the opposite direction, see the right side of fig. 2.4.

For the so-called ”ductile” damage mechanism (upper right side of fig. 2.4), a new loading cycle
leads to a more complex definition of the total shear damage definition: If the loading direction
is changed at point A in the figure, then the dissipated energy remains lost (The cycle from
the origin to point A is called positive loading case). After point A, where the total amount of
separation is δmax,A1, the elastic unloading with a user defined stiffness similar to the unloading
under normal separation comes into effect, called positive unloading case.

When the shear stress in the element becomes negative (point B), a new loading condition
becomes effective, if the separation decreases further, but the TSL of the negative traction, the
origin of which is shifted to δ−0 due to already dissipated work, is not yet reached. This region
is called negative unloading case, even though it is a loading condition, since it does not matter,
whether the separation is on the way up or down the curve.

At point C the transformed TSL for the opposite direction is reached. It can be seen that the
total separation is nearly zero even though a significant amount of work is already dissipated.
Therefore an effective separation δ̂ has to be defined, which has its origin in δ−0. The difference
in separation between point A and B is called δback, and thus the formulae for the origin of the
negative TSL δ−0 and the effective separation δ̂ writes

δ−0 = 2(δmax,A − δback) and δ̂ = δ−0 − δT (2.7)

In all subsequent changes of the load cycles it is necessary to include the shift of the positive
and the negative TSL’s, as can be seen in the second change of the loading direction in fig. 2.4,
after point D, where the calculation of the loading case depends on δ−0 and the shift of the
positive TSL, δ+0.

The flow diagram for the calculation of the shear tractions from the tangential separations is
shown in fig. 2.5.

eq. (2.7) is valid when the direction switches only once. At an initially negative and a subsequent
positive shear separation, not D−0 is shifted but D+0. The transformed damage is then Dtrans =
D −D+0. An example with multiple change in the loading direction can be find in chapter 6.

Up to now this unloading mechanism is only implemented for the 2D cohesive elements. An
extension for 3D problems is planned.

1The index T for tangential separation is omitted here and in the following, since all separations in this section
are tangential ones
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Fig. 2.5: Flowchart for the implementation of a ”ductile” unloading mechanism. Notice that
all separations are tangential separations.

2.5 Consideration of contact and friction

The contact condition of cohesive elements, i.e. prevention of adjacent continuum elements, has
to be ensured also after total failure of the cohesive element. The behaviour after failure can be
described as a c̈ontact TSL̈, depending on the mechanisms of ductile or brittle or ductile damage,
respectively. This is illustrated in fig. 2.6 for the normal separation mode. The contact of failed
cohesive elements is not yet implemented here. Further details can be found in [Roe, 2001].

If a structure fails under pure shear, frictional sliding of the fracture surfaces should be taken
into account. The frictional forces can be integrated through an extension of the TSL. Since the
determination of the friction coefficient of fracture surfaces is a difficult task and the parameter
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Fig. 2.6: Traction separation law of the cohesive element after failure for the consideration
of contact.

changes significantly after a short distance of sliding, the sliding is not implemented in the
cohesive model described in this paper. An approach for the consideration of frictional sliding
can be found in [Chaboche et al., 1997]. One application where the effect is significant and must
be regarded, is fiber pull-out in a composite material. The fracture mechanism in this case is
pure shear.
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Chapter 3

Implementation

3.1 Form of the TSL

The cohesive model has been implemented using the programming language FORTRAN as a
user defined element within the FE code ABAQUS [Hibbitt et al., 1998]. The body of the
user element routine was developed by T. Siegmund for twodimensional problems (lineshape
cohesive elements). Two shapes of the TSL have been implemented in the original procedure: a
polynomial function acc. to [Needleman, 1987], cf. fig. 2.2a) and an exponential function, acc.
to [Needleman, 1990], see fig. 2.2c), respectively. Both stress functions are based on a potential.
The polynomial function has been extended later, and a third TSL has been implemented based
on [Scheider, 2001a].

3.1.1 Polynomial TSL

The potential from which the stresses can be derived is for [Needleman, 1987]

Φ =
27
4

T0δ0

1
2

(
δN

δ0

)2
1− 4

3

(
δN

δ0

)
+

1
2

(
δN

δ0

)2
+ · · ·

. . . +
1
2
α

(
δT

δ0

)2
1− 2

(
δN

δ0

)
+

(
δN

δ0

)2
 (3.1)

α is the ratio of normal to tangential stress or tangential to normal separation so that a constant
separation energy Γ0 will be retrieved independently of the fracture mode. Equation (3.7) leads
to the following stresses:

TN =
27
4

T0

(δN

δ0

)1− 2

(
δN

δ0

)
+

(
δN

δ0

)2
+ α

(
δT

δ0

)2((
δN

δ0

)
− 1

) (3.2)
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and

T T =
27
4

T0α

(
δT

δ0

)1− 2

(
δN

δ0

)
+

(
δN

δ0

)2
 , (3.3)

respectively. This model describes only debonding by normal separation and was then general-
ized by [Tvergaard, 1990], using the damage variable D of eq. (2.5) with an exponent m = 2. In
addition, a ”cleavage” unloading procedure has been implemented as described in chapter 2.4,
in which the stiffness is reduced when damage occurs but separation totally vanishes when the
traction is reduced to zero. The stresses are calculated by

TN =
27
4

TN
0

δN

δN
0

(1−Dmax)
2 (3.4)

and

T T =
27
4

T T
0

δT

δT
0

(1−Dmax)
2 , (3.5)

This extension of the polynomial traction-separation law contains four parameters, two for
normal separation (δN

0 , TN
0 ) and two for tangential separation (δT

0 , T T
0 ).

The term Dmax is the largest value of damage according to eq. (2.5), which the cohesive element
has experienced so far. It remains constant under unloading conditions. It is worth noting that
in this case the traction is a linear function of the separation.

For pure normal separation, eq. (3.4) gives the same function as eq. (3.2).

The separation energy Γ0 can be determined for pure normal or tangential separation according
to eq. (2.3), which leads to

ΓN
0 =

9
16

TN
0 δN

0 , ΓT
0 =

9
16

T T
0 δT

0 (3.6)

for eq. (3.4) and eq. (3.5), respectively.

3.1.2 Exponential TSL

The exponential stress potential for pure normal decohesion is of the following form:

Φ =
9
16

T0δ0

1−

1 + z

(
δN

δ0

)
− 1

2
αz2

(
δT

δ0

)2
 exp

(
−z

(
δN

δ0

)) (3.7)

The value of the constant factor z is z = 16e/9 with e = exp(1). From eq. (3.7) the following
stresses can be derived:

TN = T0e

z

(
δN

δ0

)
− 1

2
αz2

(
δT

δ0

)2
 exp

(
−z

(
δN

δ0

))
(3.8)
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and

T T = T0e

[
αz

(
δT

δ0

)]
exp

(
−z

(
δN

δ0

))
, (3.9)

respectively. An extension for the application of shear fracture in conjunction with the second
potential is described in [Xu and Needleman, 1994], but not implemented here. Unloading is not
implemented in the exponential model as well; the damage is fully reversible. A sophisticated
model for unloading in conjunction with eq. (3.8) is published in [Roe, 2001].

It is worth noting that the constant parameters of the model are choosen so that the cohesive
energy at inifinite separation is the same as for the polynomial TSL. That is, eq. (3.6) also holds
for the exponential form. Since the TSL has a horizontal asymptote, the traction at

(
δN

δ0

)
= 1

is not zero, but equal to
(

T
T0

)
= 0.105.

3.1.3 Partly constant TSL

The third TSL again is capable of shear fracture and unloading and can be applied to threed-
imensional problems. In contradiction to the TSL’s mentioned above, the tractions are of the
form

TN = TN (δN , δT ) = TN
0 f(δN ) g(δT

max) T T = T T (δT , δN ) = T T
0 f(δT ) g(δN

max) (3.10)

δT
max, δ

N
max are the maximum separation values occured so far.

The implementation of this TSL has been done according to [Scheider, 2001a]. It is based on
the law with a rectangular stress function TN , T T = const of Lin (summarized in [Lin, 1998]),
shown in fig. 2.2b). Due to the implementation within ABAQUS, in which the cohesive elements
are embedded in the stiffness matrix, a constant stress function is not possible, since the stiffness
would be infinite as long as the maximum traction is not reached. A jump in the TSL would
be inconsistent with the requirement of steady differentiability. That is why the jump at initial
separation is replaced by a quadratic function.

To avoid convergence problems the jump at total separation δ0 is also replaced by function which
ensures a steady differentiable reduction of the traction up to the total loss of stress carrying
capacity. A cubic function is used here.

The increase of the stress, constant term and decrease leads to the following approach of the
TSL, both for the normal separation, δ = δN , and the tangential separation, δ = δT :

f(δ) =


2
(

δ
δ1

)
−
(

δ
δ1

)2
δ < δ1

1 δ1 < δ < δ2

2
(

δ−δ2
δ0−δ2

)3
− 3

(
δ−δ2
δ0−δ2

)2
+ 1 δ2 < δ < 1

(3.11)

In practise one can choose δ1 very small without convergence problems, whereas the softening
branch of the curve whose beginning is characterized by δ2 must cover a broader range. For
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Fig. 3.1: Implemented traction separation functions (one dimensional illustration)

the computations proposed in [Scheider, 2001a] values of δ1 = 0.01 and δ2 = 0.75 have been
choosen. In fig. 3.1 function eq. (3.11) is displayed with these values. If one sets δ1 = δ2 = 0.33
then the curve is very similar to that according to [Needleman, 1987] — the softening curve is
actually identically.

The cohesive energy for pure normal or tangential separation can be determined using eq. (2.3)
with eq. (3.10) and eq. (3.11) by

Γ0 =
∫ δ0

0
T (δ)dδ = T0δ0(

1
2
− 1

3
δ1

δ0
+

1
2

δ2

δ0
) . (3.12)

If from experiments the cohesie energy is known, then the maximum separation is given by

δ0 =
2Γ0

T0

1(
1− 2

3
d1
δ0

+ d2
δ0

) . (3.13)

The function g(δ) in eq. (3.10) defines the connection between the normal traction and the tan-
gential opening, and vice versa. There is no obvious physical foundation for a specific function.
In the current implementation, a cubic decreasing function has been used:

g(δ) = 2
(

δ

δ0

)3

− 3
(

δ

δ0

)2

+ 1 (3.14)

The normal traction for the models due to Scheider, eq. (3.10), and Tvergaard (1990), eq. (3.4),
under a combined normal and tangential separation are shown in a contourplot, fig. 3.2. Given
in the figure are the lines of equal normal tractions, TN , with TN

0 = 1000MPa.

In this model unloading is defined to occur for normal and tangential tractions separately.
If normal separation decreases, the normal traction decreases, too, with a linear function of
the separation. Since the function g is only dependent on the maximum (shear-)separation, a
decreasing δT has no influence on the normal traction.
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Fig. 3.2: Plot showing the lines of equal normal tractions under a combined normal and
tangential separation a) for the TSL acc. to [Tvergaard, 1990]; b) acc. to Scheider.

The slope of the normal traction under unloading conditions is the initial slope of the function
f(δN = 0) = 2/δ1. For a mathematical formulation of the unloading behaviour one has to
redefine eq. (3.10):

TN = TN (δN , δT ) = TN
0 f∗(δN ) g(δT

max) T T = T T (δT , δN ) = T T
0 f∗(δT ) g(δN

max) (3.15)

with

f∗ =

{
2
(

δ−δmax
δ1

)
+ T N

max
T0

δ < δmax

f δ > δmax

(3.16)

TN
max is the traction at the maximum separation δN

max.

In the following table the tractions for all possible loading conditions are given. The derivation
of a quantity with respect to δN and to δT are denoted by (),N and (),N , respectively.
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T T , Loading T T , Unloading
TN = TN

0 f(δN )g(δT
max) TN = TN

0 f(δN )g(δT
max)

TN , T T = T T
0 f(δT )g(δN

max) T T = T T
0

[
2 δT−δT

max
δ1

− T T
max

T T
0 g(δT

max)

]
g(δN

max)

Loading TN
,N = TN

0 f,N (δN )g(δT
max) TN

,N = TN
0 f,N (δN )g(δT

max)
TN

,T = TN
0 f(δN )g,T (δT

max) TN
,T = 0

T T
,N = T T

0 f,N (δT )g(δN
max) T T

,N = T T
0

[
2 δT−δT

max
δ1

− T T
max

T T
0 g(δT

max)

]
g,N (δN

max)

T T
,T = T T

0 f(δT )g,T (δN
max) T T

,T = T T
0

2
δ1

g,T (δN
max)

TN = TN
0

[
2 δN−δN

max
δ1

− T N
max

T N
0 g(δT

max)

]
g(δT

max) TN = TN
0

[
2 δN−δN

max
δ1

− T N
max

T N
0 g(δT

max)

]
g(δT

max)

TN , T T = T T
0 f(δT )g(δN

max) T T = T T
0

[
2 δT−δT

max
δ1

− T T
max

T T
0 g(δT

max)

]
g(δN

max)

Unloading TN
,N = TN

0
2
δ1

g,N (δT
max) TN

,N = TN
0

2
δ1

g,N (δT
max)

TN
,T = TN

0

[
2 δN−δN

max
δ1

− T N
max

T N
0 g(δN

max)

]
g,T (δT

max) TN
,T = 0

T T
,N = 0 T T

,N = 0
T T

,T = T T
0 f,T (δT )g(δN

max) T T
,T = T T

0
2
δ1

g,T (δN
max)

3.1.4 Aspects of numerical implementation

For the calculation of the stiffness of the cohesive element, i.e. the rate of the load in dependence
of the displacement,it is necessary to evaluate the derivative of the normal and tangential traction
to the separations. If the equation for the traction contains the damage D as shown in principal
in eq. (2.6), e.g. eq. (3.4), this has been done by partial derivative. The derivative of the tractions
then leads to

d TN

d δN
=

∂ TN

∂ δN
+

∂ TN

∂ D

∂ D

∂ δN
and

d TN

d δT
=

∂ TN

∂ δT
+

∂ TN

∂ D

∂ D

∂ δT
. (3.17)

The derivative of the shear traction is analogous. For threedimensional analyses where two
tangential separations exist, the derivative has to be performed with respect to each of these
separations, δT i (i = 1, 2), which leads to

d TN

d δT i
=

∂ TN

∂ δT

∂ δT

∂ δT i
+

∂ TN

∂ D

∂ D

∂ δT

∂ δT

∂ δT i
. (3.18)

The shear tractions for the 3D case have to be split into the directions of δT1, δT2 before the
derivative is executed:

T T1 = T T δT1

δT
and T T2 = T T δT2

δT
(3.19)

The derivative of the shear tractions to the tangential separations thus leads to

d T T1

d δT
1

=

(
∂ T T

∂ δT

∂ δT

∂ δT1
+

∂ T T

∂ D

∂ D

∂ δT

∂ δT

∂ δT1

)
δT1

δT
+

T T

δT

1−
(

δT1

δT

)2
 . (3.20)
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and

d T T1

d δT
2

=

(
∂ T T

∂ δT

∂ δT

∂ δT2
+

∂ T T

∂ D

∂ D

∂ δT

∂ δT

∂ δT2

)
δT1

δT
. (3.21)

The derivatives of T T2 with respect to δT1 and δT2 are analogous. It is worth noting that for the
threedimensional case a reverse loading (see the so-called negative loading case in chapter 2.4.2)
is not possible, since the total tangential separation is always positive. Nevertheless, a local
unloading in tangential direction can occur.

The separations are calculated in every increment for all cohesive elements at the integration
points. When the separation energy according to eq. (3.6) or eq. (3.12) is reached (or the
respective separations), the element has failed at this point1. The contribution of the integration
point to the stiffness vanishes and the point gets the status ”failed”. An integration point that
has lost its stiffness once, can never get another status.

3.2 Element library

User defined elements have been developed for two- and threedimensional models. Since they
behave like contact elements (but contrary to those they may be stressed under tension loading),
they have one dimension less than the surrounding continuum elements. Even though the
cohesive element has no volume in the unloaded and undamaged state, they will be called 3D
cohesive element in the following, the elements for twodimensional problems with be colled 2D
cohesive elements, respectively.

The 2D cohesive elements have four nodes with a linear displacement formulation. Elements
are implemented for plane and for axisymmetric problems. There is no difference between
plane stress and plane strain elements, since the stress in the third direction does not influence
the behaviour of the cohesive element. The difference between those two element types is the
calculation of the integration point area: While the area of plane elements is calculated by
the half length of the element times its thickness, the integration point area of axisymmetric
elements depends on the distance from the rotation axis. A problem arises when plane stress
elements are used: The thickness of the continuum element can not be taken into account, since
the actual thickness of the element is not handed to the user element subroutine.

Contrary to the linear formulation of the 2D cohesive elements, the threedimensional elements
are variable node elements; they can be built using eight nodes and a linear displacement formu-
lation or with quadratic displacements and 16 or 18 nodes. The stresses are calculated similar
to the 2D cohesive elements at the integration points according to the TSL. Possible numbers
for the integration points per element are 4 or 9. Theoretically any combination of node and
integration point number is possible, but a linear element with nine integration points is not
very useful. A quadratic element with 4 integration points might lead to zero energy modes but
the experience shows that this does not happen in a crack propagation analysis.

Elements are shown in fig. 3.3. In the undeformed state every two nodes share the same coor-
dinates, but in the drawing they are plottet with a short distance for clarification.

1In the exponential separation law, eq. (3.8), this energy is reached at infinitum. Internal to the program the
element stiffness is set to zero at δ = 10δ0. At this separation more than 99% of the total energy is dissipated.
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Fig. 3.3: Element node and integration point positions for the two- and threedimensional
element. The configuration for the 3D 8 node and 16/18 node elements are shown
separately.

3.3 Local coordinate system

The following section regards to the threedimensional cohesive element. All explanations can
be applied to the 2D element as well.

For the quantitative evaluation of separation of the opposite cohesive surfaces one face is called
upper and a the other lower surface, but theses names are choosen arbitrarily and only used
for the distinction in the text. In the undeformed state both faces are at the same geometrical
position. The separation can be due to sliding or ”tangential opening” (which is shear fracture),
normal opening (Mode I fracture) or any combination of these two.

The local coordinate system is constructed in the following way: The local direction ~g1 is the
direction between the edge bisector between nodes N1 and N4 to the edgte bisector between
nodes N2 and N3, cf. fig. 3.3. The direction ~g2 is defined by the orthogonal part of the straight
line between the edge bisector K1 K2 and K3 K4. The face normal can then be calculated by
the crossproduct ~g3 = ~g1 × ~g2. A definition of the local coordinate system as a field variable,
which is possible using the Jakobi matrix, has not been used. The separations in the direction
of ~g1 are called δT1, those in the direction of ~g2 are called δT2. The local coordinates in the
respective directions are named ξ and η. The coordinate value in the third direction is ζ. The
field variable of the separations due to ”tangential opening” in the two coordinate directions,
δT1, δT2, and normal opening, δN , are

(
δT1(ξ, η), δT2(ξ, η), δN (ξ, η)

)
.

There is no difference for the cohesive element, which of either surface is moving absolutely.
From this it follows that neither the upper nor the lower face can be the reference face for
the coordinate system. Insteat of these two other possibilities for the definition of the local
coordinate system are implemented:

1. The original position of the cohesive element is taken as the reference for the coordinate
system. This is analogous to the theory of small deformations.

2. Analogous to the theory of large deformation the coordinate system is moving with the
element using a mid section face, that is as the bisector between upper and lower surface.
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In fig. 3.4 the difference is visible with regard to a rotation of a 2D element: While definition
1 with its coordinate system (ξ1, ζ1) leads to a partly tangential opening in direction ξ1, the
element is separated under pure Mode I (direction ζ2) using the definitioin 2, coordinate system
(ξ2, ζ2).
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Fig. 3.4: Definition of the local coordinate system within the cohesive element.

3.4 Energy principle for the cohesive element

The stiffness matrix for the cohesive element can be derived based upon the principle of virtual
work. Since δ usually means the variation of a quantity, the separation will be denoted as [u] in
this section for minimizing the risk of confusion.

The virtual work of stresses for the cohesive element is defined by

δΠi =
∫

t · δ[u] dA , (3.22)

where t is the vector of the cohesive stresses acting on the separations.

In the following a compatible approach for the coordinates and the separations [u], δ[u] according
to the finite element formulation of the connected continuum elements is constructed (linear,
quadratic, two- or threedimensional, etc.). The displacements [u] are replaced by the product
of the matrix of shape functions Vu and the displacements at the nodes ue:

u = Vu · ue (3.23)

The content of Vu is

Vij =

 f1 0 0 f2 0 0 fn 0 0
0 f1 0 0 f2 0 · · · 0 fn 0
0 0 f1 0 0 f2 0 0 fn

 (3.24)
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Using eq. (3.23), eq. (3.22) leads to

δΠi = δ[ue] ·
∫

VT
u · t dA (3.25)

Since the cohesive stresses used in eq. (3.22) are nonlinear functions of the displacements, the
nodal displacements cannot be extracted from the integral, and a linear system of equations can
not be set up. The tangential stiffness matrix of the incremental solution can be calculated with
eq. (3.25) using the total differential of the tractions

dt =
∂t
∂u

· du (3.26)

In practise the difference ∆u is used instead of du. The total displacement at the time t + ∆t
is then given by ut+∆t = ut + ∆u. With the differential formulation the incremental system of
equations writes:

K ·∆[ue] =
∫

VT
u ·

∂t
∂[u]

·Vu dA ·∆[ue] (3.27)

The integration of eq. (3.27) is done numerically using the Gauss integration algorithm. With
that the integral leads to

K =
∫

VT
u ·

∂t
∂[u]

·Vu dA =
∑

i

(
VT

u ·
∂t

∂[u]
·Vu

)∣∣∣∣
i

wiJi (3.28)

wi are the weight function for the Gauss integration, Ji is the Jacobian determinant of the
cohesive element at the specific Gauss point. As already mentioned, the cohesive element itself
has only two dimensions, so the Jacobian determinant is calculated from the matrix

J =

(
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

)
(3.29)

The Jacobian determinant can be set up using the undeformed or the deformed coordinates
according to the theory of small or large deformations. Independently to this the element
coordinate system (chapter 3.3) can be defined in the reference plane or in the deformed bisector
plane, according to small or large rotations.

Due to the sparse matrix Vu, glrefeq.ansatzmatrix, the term in parenthesis of eq. (3.28) can be
calculated easily. After back transformation of the local stresses and separations to the global
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coordinate system the integrand of eq. (3.28) writes:

VT
u ·

∂t
∂[u]

·Vu =



f2
1 tx,x f2

1 tx,y f2
1 tx,z f1f2tx,x

f2
1 ty,x f2

1 ty,y f2
1 ty,z

. . .
f2
1 tz,x f2

1 tz,y f2
1 tz,z

f1f2tx,x f2
2 tx,x

. . . . . .

f2
ntx,x f2

ntx,y f2
ntx,z

f2
nty,x f2

nty,y f2
nty,z

f2
ntz,x f2

ntz,y f2
ntz,z


(3.30)

The calculation of the right hand side of the system of equations results from the stresses at the
”surfaces” of the cohesive element. These are the top and bottom faces, at which exactly the
cohesive stresses are transferred to the neighboring continuum elements. The nodal forces of the
element therefore are calculated from the principle of virtual work δΠa = δΠi using eq. (3.25)
and

δΠa = δ[ue]f , (3.31)

which leads to

f =
∫

VT
u · t dA (3.32)

for the lodal forces f . Analogous to the stiffness calculation in eq. (3.28) the external forces are
calculated numerically. With that eq. (3.32) writes

f =
∑

i

(
VT

u · t
)∣∣∣

i
wiJi . (3.33)

The stiffness matrix of the cohesive element, eq. (3.28) is generally unsymmetrically, at least for
different separation laws in normal and tangential directions. From experience the convergence
is sufficiently high and the computation time can be significantly reduced, when the symmetric
part of the stiffness matrix, Ksymm = 1

2(K+KT ) is used. This is the default in ABAQUS; when
the calculation has to be performed using an unsymmetric stiffness matrix, one has to introduce
the parameter *STEP, UNSYMM=YES.

The structure of the user element subroutine is explained and schematically shown in Appendix
A for the 2D and the 3D cohesive element.
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Chapter 4

ABAQUS input for the cohesive
element

The element definition within ABAQUS is done using the command ELEMENT. At this time three
elements, U1 (cohesive element for axisymmetric problems), U2 (plane cohesive element) and
U5 (cohesive element for threedimensional problems) are implemented.

With the parameter ELEMENT,TYPE= the specific type (U1, U2 or U5) is set up. The input is
done by

ELEMENT, TYPE=U1|U2|U5 [,ELSET=name]

element nr, node1, node2, ..., nodeN

The arrangement of the nodes in the specific elements is shown in fig. 3.3.

Beside the element definition there are three additional commands required in the ABAQUS
input file for the crack propagation analysis with cohesive elements. At first the element types
must be announced to the program. This is done by

USER ELEMENT, TYPE=eltype name, NODES=number of nodes,

PROPERTIES=real props, IPROPERTIES=integer props,

COORDINATES=number of dofs, VARIABLES=number of outputvariables

The values required for the parameters are given in the following table:

U1 U2 U5
(axisymm.) (plane ele-

ment)
(3D element)

TYPE U1 U2 U5
NODES 4 4 8 – 18
PROPERTIES 5/7 5/7 4/6
IPROPERTIES 2 2 3
COORDINATES 2 2 3
VARIABLES 14/18 14/18 5 x NODES

As already mentioned in chapter 3.2, the node number of element type U5 is variable and can
be 8, 16 or 18. The number of properties used in a 2D analysis is 5 for the polynomial and
the exponential model and 7 for the model of Scheider. For a 3D analysis one property, the
thickness, is omitted.

27
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The number of output variables is 14 for plain or axisymmetric elements together with the
polynomial or the exponential model, 18 variables are required for the model due to Scheider.

The input of the cohesive material parameters is done for the plane and axisymmetric elements
by

UEL PROPERTY,ELSET=elset name

delta N, delta T, traction N, traction T, thickness, [ delta 1, delta 2,] model

coord flag

The parameter model defines the TSL and is an integer number. Here 1 means the TSL due to
[Tvergaard, 1990] (polynomial approach), 2 is due to [Needleman, 1990] (exponential approach)
and 3 defines the model due to [Scheider, 2001a].

coord flag can have the values 0 and 1. 0 means that the local coordinate system is fixed at
the reference plane of the cohesive element, with coord flag=1 the actual configuration is used
for the coordinate system, cf. chapter 3.3.

For the models 1 and 2 the parameters delta 1 and delta 2 are not needed and are therefore
omitted1 The value for delta T can not be arbitrarily choosen for model 2, but is defined by δT =
T T

T N δN . The input of this parameter is therefore obsolete. In addition, the parameter thickness
is not used for the axisymmetric elements. Nevertheless, either of the latter parameters must
be set.

The input of the element properties for the 3D element is very similar to the 2D element:

UEL PROPERTY,ELSET=elset name

delta N, delta T, traction N, traction T, delta 1, delta 2, model, coord flag

number of gausspoints

There is no thickness to be put in for the 3D element. The number of gausspoints can be 4
or 9. In addition the value can be 0 for a full integration (4 integration points for elements with
linear formulation and 9 integration points for elements with a quadratic formulation) and -1
(always 4 integration points), respectively.

Beside the commands UEL PROPERTY and USER ELEMENT a command is required which specifies
the position of the FORTRAN source code file for the user element routine in the directory tree.
This is done by

USER SUBROUTINE, INPUT=quelldatei.f

An example input file for the verification model (chapter 6) is given in appendix B.

1Caution: Since always a set of 8 values must be in one line, the input of coord flag has to be written on the
same line as model.



Chapter 5

Results output

The definition of *USER ELEMENT, VARIABLES=... leads to 14 values per 2D–element for each
increment. For the 3D elements 10 values per integration point are printed (i.e. 40 or 90 values
per element). The variables can be post processed by abaqus post only by the definition of
curves. In addition, the output to the .dat file is possible. The command for the printing of the
variables to that file is

EL PRINT,ELSET=cohesive element group

SDV1, ..., SDVn

The command for the output to the results file (Suffix .fil) is

EL FILE,ELSET=cohesive element group

SDV

The following variables are defined for the 2D cohesive elements:

variable meaning
SDV1 normal separation δN (int. point A)
SDV2 tangential separation δT (int. point A)
SDV3 normal separation δN (int. point B)
SDV4 tangential separation δT (int. point B)
SDV5 normal stress TN (int. point A)
SDV6 tangential stress T T (int. point A)
SDV7 normal stress TN (int. point B)
SDV8 tangential stress T T (int. point B)
SDV9 status of damage (int. point A)

SDV11 Model 1: max. absolute separation D experienced so far (int. point
A)
Model 3: max. normal separation δN

max experienced so far (int. point
A)

SDV13 Model 3: max. tangential separation δT
max experienced so far (int.

point A)
SDV15 Shift of the origin of the tangential TSL for positive tractions, δ+0 (int.

point A)
SDV17 Shift of the origin of the tangential TSL for negative tractions, δ−0 (int.

point A)
SDV10 ... SDV18 as SDV9 ... SDV17 for int. point B
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The variables SDV9 ... SDV18 are used internally and are of little importance for the post
processing. Variables SDV14 ... SDV18 are required only for model 3.

The variables SDV9 and SDV10, respectively, specify the status regarding failure of the element.
When SDV9=-1, the cohesive element has lost its stiffness and the crack is advanced one inte-
gration point. SDV9=0 means that the integration point actually experiences local unloading
(not available for model 2). For model 3 there is a distinction between the status of normal and
tangential separation, both of which are given in SDV9. The value of the variable consists of two
alphanumerical characters in front of the decimal point (MN.000). The meaning of M and N is
given in the table below:

value meaning
0 unloading
1 loading, maximum stress T0 is not yet reached
2 loading, region of constant stress
3 loading, softening region

If the element fails due to a separation greater than the maximum separation, it gets the status
-1 (no distinction between normal and shear state).

For the 3D elements the output consists of 10 variables per integration points, which are stored
sequentially for all integration points of the element. The following table therefore gives only
the meaning of the variables for one integration point.

variable meaning
SDV1 normal separation δN

SDV2 tangential separation, direction 1: δT1

SDV3 normal separation, direction 2: δT2

SDV4 normal spannung TN

SDV5 tangential spannung, direction 1: T T1

SDV6 tangential spannung, direction 2: T T2

SDV7 Model 1: status of damage
Model 3: status of damage in normal direction

SDV8 Model 3: status of damage in tangential direction
SDV9 Model 1: max. absolute separation D experienced so far

Model 3: max. normal separation experienced so far δN
max

SDV10 Model 3: max. tangent. separation experienced so far δT
max

The directions T1 and T2 confer to the directions ~g1 and ~g2 defined in chapter 3.2. The maximum
tangential separation is defined by the norm of both components δT1 and δT2.

The status of the damage for the 3D elements of model 3 is divided in normal and tangential
direction (SDV7 and SDV8). The value of these variables can be:

value meaning
0 unloading
1 loading, maximum stress T0 is not yet reached
2 loading, region of constant stress
3 loading, softening region

-1 total failure



Chapter 6

Verification: Three element test for
tangential separation with
alternating loading direction

In the following a three element test as shown in fig. 6.1 consisting of two 2D continuum elements
(plane strain) and one cohesive element under 45◦ with respect to the loading direction is
analyzed. The cyclic y–displacement of the nodes N1 and N2 is plotted in fig. 6.2a. The
nodes N7 and N8 are fixed in the y–direction, the x–displacement of node N7 is fixed, too. It
shall be investigated, how The behaviour of the traction and separation under cyclic loading is
investigated using the TSL of eq. (3.11).

N1 N2

N3

N4

N5

N6

N7 N8

Fig. 6.1: 3 element test for the verification of the behaviour of the cohesive element (grey
shaded between the two continuum elements) at alternating loading direction

The material of the continuum elements follows an potential elastic plastic law with a yield
limit of 100 MPa and a hardening exponent of n = 5. The cohesive element has a normal and
tangential traction of TN

0 = 160MPa and T T
0 = 80MPa, respectively. The maximum separation

is δN
0 = 0.05mm and δT

0 = 0.2mm, respectively. The TSL used is the model 3, [Scheider, 2001a],
with the additional parameter δ1 = 0.01δ0 and δ2 = 0.75δ0.

Since in the cohesive element the separation is almost solely tangential — the normal stresses
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Fig. 6.2: a: cyclic prescibed displacement for the shear test; b: curve of the tangential
traction with respect to the separation

stay below the maximum traction T0 —, the total shear separation δT
0 is available up to total

failure. In fig. 6.2b the traction separation curve is shown for the cyclic loading. Up to time
t = 1 the damage increases to a value of about 38%. The shear traction (and the associated
separation) are negative during that time. The full separation curve (up to δT = δT

0 ) in that
direction is shown in the figure with a dashdotted line.

When the prescribed displacement is reversed, the value of separation decreases, the stress in
the element becomes positive and the damage also increases although the absolute value of
separation decreases. At t = 2 the amount of damage is 72%. The loading path in terms of
traction–separation follows the curve shown with a dashed line in figure fig. 6.2b. it can be seen,
that the origin of the curve is shifted to the negative direction according to eq. (2.7).

After a second change in the loading direction, the separation follows the dotted damage curve,
and the traction stays constant until the damage has reached a value of 75%, which is also
the value of δ2. When the loading increases further, the traction decreases according to the
cubic part of the TSL. The total failure is reached at t = 2.785. The total energy dissipated by
that loading process, calculated by the integral of the traction with respect to the separation,
is 13.7 N/mm. This is exactly the value of the separation energy Γ0, which can be calculated
using eq. (3.12).
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Appendix A

Program structure

The FORTRAN subroutine for the user element must be named UEL and has several arguments.
The most important arguments are the nodal coordinates COORDS, the displacements U of the
cohesive element and the internal variables, which can be assigned and manipulated by their
names SDV(i). The important output parameters are the element stiffness matrix AMATRIX and
the load vector RHS, respectively. In UEL, first the input parameters and other variables are
initialised, then the separations at the nodes UX(i), UX(i) and UZ(i)1 and the coordinates of
the midplane (X(i), Y(i) and Z(i)1), respectively, are calculated in global coordinates from the
displacements of the adjacent nodes. The separations and material parameters are then passed
to another subprogram, which depends on the element type (U1/U2: CZE2D, U5: CZE3D5). The
proceeding in these routines is different in several ways. In both subroutines the normal and
tangential separation are calculated in a element local coordinate system. These values are
passed for each integration point to another subroutine (2D: POTENT, 3D: POT3D), in which the
normal and tangential tractions, TN and TT, respectively, and their derivatives, (DTNDUN etc.),
are determined. These variables are returned to the calling subroutines, which calculate the
stiffness matrix and the right hand side vector based an their values.

The structure of the subroutines is given in the following:

A.1 For the 3D–cohesive elements:

• Determination of the separation UX, UY, UZ and the coordinates X, Y, Z (this is performed
identically for the 2D and 3D elements in routine UEL)

• Passing of these variable to the subroutine CZE3D5

• Calculation of the local unit vectors G1, G2, G2, and the transformation matrix ALPHA,
respectively.

• DO loop executed for every integration point

– Calculation of the integration point displacement UGP using eq. (3.23). The integra-
tion point coordinates are calculated analoguous.

– Calculation of the Jacobian determinante at the integration point XJDET according
to eq. (3.29)

1for the 3D cohesive element
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– Transformation of the integration point displacements (components UN, UT1 and UT2)

– Determination of the stresses and their derivates within the subroutine POT3D

– Backtransformation of the stresses and their derivatives

– Calculation of the stiffness matrix K (array AMATRX) using eq. (3.28)

– Calculation of the global load vector f (array RHS) using eq. (3.33)

• Assignment of the remaining values in RHS and AMATRX, respectively, since the compenents
are calculated at the midsurface but have to be given for the nodes at the top and the
bottom surface.

A.2 For the 2D cohesive elements:

• Determination of the separation UX, UY, UZ and the coordinates X, Y, Z (this is performed
identically for the 2D and 3D elements in routine UEL)

• Passing of these variable to the subroutine CZE3D5

• Determination of the angle with respect to the global x-axis THET

• Calculation of the transformation maxtrix (global ↔ local)

(
XT1 XT2
XN1 XN2

)

• Determination of the integration point area AREAA (integration point A) and AREAB (inte-
gration point B)3

• Transformation of the separation at the nodes into the local coordinate system

• Calculation of the local separation at the integration points
Integration point A: UNA, UTA; Integration point B: UNB, UTB

• Calculation of the stresses in the local coordinate system in subroutine POTENT based on
the separation law chosen

• Calculation of the forces (local coordinate system) (FNA, FTA, FNB, FTB) by multiplying the
integration point area with the stresses.

• Calculation of the forces at the nodes in the local coordinate system (FNALP, FTALP, FNBET,
FTBET) based on the balance of load and momentum.

• Back transformation into the global coordinate system using the transformation matrix.

3For the plane elements the area of one integration point is just half of the element length multiplied by
the thickness. For the axisymmetric elements the thickness can be calculated by tA = 2π(3/4 rA + 1/4 rB) and
tB = 2π(3/4 rB + 1/4 rA), respectively.



Appendix B

Inputfile for the verification example

*HEADING
2 Element Test with tangential separation with alternating loading direction (twodimensional)
***************************************************************
*USER ELEMENT,TYPE=U2,NODES=4,PROPERT=7,IPROP=2,COORDI=2,VAR=14
1,2
***************************************************************
*NODE, SYSTEM=R
1, .000000000E+00, .000000000E+00, .000000000E+00
2, .100000000E+01, .100000000E+01, .000000000E+00
3, .000000000E+00, .200000000E+01, .000000000E+00
4, .100000000E+01, .200000000E+01, .000000000E+00
5, .000000000E+00, .000000000E+00, .000000000E+00
6, .100000000E+01, .100000000E+01, .000000000E+00
7, .000000000E+00,-.200000000E+01, .000000000E+00
8, .100000000E+01,-.200000000E+01, .000000000E+00
*ELEMENT,TYPE=CPE4 ,ELSET=E0000001
1, 1,2,4,3,
2, 5,7,8,6,
*ELEMENT,TYPE=U2 ,ELSET=E0000002
11, 2,1,6,5,
*SOLID SECTION,ELSET=E0000001,MATERIAL=M0001001
*MATERIAL,NAME=M0001001
*ELASTIC
.210000E+06, .300
*PLASTIC
.100000000E+03, .000000000E+00
.170000000E+03, .595170000E-02
.240000000E+03, .367744000E-01
.310000000E+03, .134853100E+00
.380000000E+03, .375500800E+00
.450000000E+03, .876562500E+00
.520000000E+03, .180801920E+01
.590000000E+03, .340159190E+01
.660000000E+03, .596034560E+01
.730000000E+03, .986829330E+01
.800000000E+03, .156000000E+02
************************************************************************
*UEL PROPERTY,ELSET=E0000002
.0500 , .2000 , 160.0 , 80.0 , 1.000 , .5000E-01, .750, 3
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1
************************************************************************
*USER SUBROUTINE,INPUT=/wma22/ingo/software/czm-aba/czm-2d3d.f
************************************************************************
*NSET,NSET=TOP
3,4,
*NSET,NSET=FIXED
8,
*NSET,NSET=CLAMPED
7,
*BOUNDARY FIXED, 1,1, 0.0
CLAMPED, 1,2, 0.0
**
*RESTART,WRITE
*PRINT,FREQUENCY= 1
*CONTROLS,PARAMETER=TIMEINC
5,8,12,11
*CONTROLS,PARAMETER=LINESEARCH
4,2.5,0.4
**
** BEGINN DES LASTSCHRITTS 1
**
*STEP,NLGEOM,INC=999,EXTRAP=PARABOLIC
*STATIC
0.0010 , 1.0 , 0.0001, 0.04000
*BOUNDARY,OP=MOD
TOP,2,, 0.1500
*NODE PRINT,SUM=NO
U,RF
****************************************
*EL PRINT,ELSET=E0000002,SUM=NO
SDV1,SDV2,SDV3,SDV4,SDV5,SDV6,SDV7,SDV8
****************************************
*END STEP
**
** BEGINN DES LASTSCHRITTS 2
**
*STEP,NLGEOM,INC=999,EXTRAP=PARABOLIC
*STATIC
0.0200 , 1.0 , 0.0001, 0.05000
*BOUNDARY,OP=MOD
TOP,2,, 0.1100
*NODE PRINT,SUM=NO
U,RF
****************************************
*EL PRINT,ELSET=E0000002,SUM=NO
SDV1,SDV2,SDV3,SDV4,SDV5,SDV6,SDV7,SDV8
****************************************
*END STEP
**
** BEGINN DES LASTSCHRITTS 3
**
*STEP,NLGEOM,INC=999,EXTRAP=PARABOLIC
*STATIC
0.0200 , 1.0 , 0.0001, 0.05000
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*BOUNDARY,OP=MOD
TOP,2,, 0.1500
*NODE PRINT,SUM=NO
U,RF
****************************************
*EL PRINT,ELSET=E0000002,SUM=NO
SDV1,SDV2,SDV3,SDV4,SDV5,SDV6,SDV7,SDV8
****************************************
*END STEP
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